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Abstract
We have extended the entropic sampling Monte Carlo method to the case of
path integral representation of a quantum system. A two-dimensional density
of states is introduced into path integral form of the quantum canonical partition
function. Entropic sampling technique within the algorithm suggested recently
by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86
2050) is then applied to calculate the corresponding entropy distribution. A
three-dimensional quantum oscillator is considered as an example. Canonical
distributions for a wide range of temperatures are obtained in a single simulation
run, and exact data for the energy are reproduced.

PACS numbers: 02.70.Ss, 05.20.Gg, 05.30.−d

1. Introduction

In the last decade Monte Carlo simulation in generalized ensembles such as expanded ensemble
[1–4], simulated [5] and parallel tempering [6], multicanonical [7] and entropic [8] sampling
has become an important tool in solving various complicated problems of molecular and
statistical physics (for example, see a recent review by Iba [9]). Common to these approaches
is some modification of statistical ensembles, aimed at overcoming certain difficulties or
limitations of conventional Monte Carlo or molecular dynamics methods. Such difficulties
usually arise when a standard simulation algorithm is unable to sample properly all relevant
regions of the configurational space, as is the case for free energy computations or when
the configurational space is separated into different parts with a slow transition rate between
them. Generalized ensembles modify the original, typically canonical, ensemble in a way
which improves sampling of the relevant region of configurational space. A characteristic
example is the temperature-expanded ensemble when one joins low- and high-temperature
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configurations. Besides improvement of sampling, the generalized ensemble algorithms often
allow one to estimate various thermodynamic properties over a wide range of temperatures
(or other parameters) from a single simulation run.

An important algorithmic point in most of these approaches is the problem of initial
estimation and further adjustment of the so-called balancing factors, which regulate the
resulting probability distribution and are extremely important for the success of the method.
For example, in the expanded ensemble method it is necessary to obtain a nearly flat distribution
of visits to separate subensembles. In the entropic sampling, one needs to get a flat distribution
over energy. In very recent works [10, 11] Wang and Landau suggested an algorithm which
provides an automatic adjustment and accurate finetuning of relevant parameters.

So far the discussed methods were used for simulation of either lattice models or
continuous classical systems. In this work we apply the entropic sampling [8] within the
Wang–Landau algorithm to calculate the density of states in the canonical quantum partition
function. It is known that a quantum particle at finite temperature can be presented, within the
path integral formalism [12], as a ‘ring polymer’ consisting of n beads connected by harmonic
bonds (springs) [13, 14]. The springs, however, become very stiff at high temperatures or
at great number of beads n. This leads to numerous difficulties in practical simulations
by the conventional canonical Monte Carlo algorithm, related to the slow sampling of the
configurational space. The situation becomes more severe for many interacting quantum
particles. The problem thus falls in the class where generalized ensemble methods have
proved to be useful.

The aim of this paper is to present the entropic sampling approach in the case of quantum
statistics. We demonstrate the method on a simple example of a three-dimensional quantum
oscillator. While simulation of a quantum oscillator does not pose a computational problem
in a conventional path integral Monte Carlo scheme, the example is instructive because it
allows comparison with the exact analytical solution. Moreover, it allows one to obtain some
interesting insights into the machinery behind the path integral Monte Carlo technique.

2. Entropic sampling for quantum partition function

The path integral form of the canonical quantum partition function Z(β) in the n-bead
approximation can be expressed as

Zn(β) =
∫

dq exp

(
−H1(q)

β
− βH2(q)

)
. (1)

Here q is a dNn-vector (d—dimensionality, N—number of particles, n—number of beads);
β = (kT )−1 is the reciprocal temperature; and H1(q) and H2(q) are temperature-independent
functions of coordinates:

H1(q) = nµ

2h̄2

∑
1�t�n

(rt − rt+1)
2 (2)

(rt is a dN dimensional vector, µ is the mass of a particle, rn+1 ≡ r1) and

H2(q) = 1

n

∑
1�t�n

V (rt ). (3)

H1(q) is related to the kinetic energy of the system and H2(q) accounts for the potential
energy. The latter in the general case includes both external field and interparticle interactions.
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Reciprocal temperature β enters into two terms of the exponent in (1) in different (inverse)
powers, 1 and −1. Hence the density of states, �, which we are now going to introduce, would
necessarily depend on two variables, E1 and E2. We can present Zn(β) in (1) as

Zn(β) =
∫

dE1 dE2 exp

(
−E1

β
− βE2

)
�(E1, E2) (4)

where

�(E1, E2) =
∫

dq δ(E1 − H1(q))δ(E2 − H2(q)) (5)

is the density of states independent of temperature. The range for E1 in (4) is always positive
while E2 can generally have both signs.

Unfortunately �(E1, E2) cannot be reduced to a product of two terms depending
separately on E1 and E2. So, in contrast to the case of classical statistics, we meet with a two-
variable problem. In other aspects it is an analogue of the classical density of state function.
In order to avoid large numbers we deal with the logarithm of �, which can be regarded as
corresponding to the ‘entropy of states’ or entropy distribution, S(E1, E2) = ln �(E1, E2).
Knowing � (or S), one gets the canonical distribution function

P(E1, E2; β) = exp(−E1/β − E2β + S(E1, E2)) (6)

from which all thermodynamical properties can be obtained.
It should be noted here that the normalization constant for � is important only for the

calculation of the partition function itself while averages such as the potential or kinetic part
of the internal energy are independent of any additional factor since the latter enters integrals
in both the numerator and denominator of the relevant expressions and cancels.

Practical simulations have been carried out for a three-dimensional quantum oscillator so
that V (r) = µω2

2 r2 > 0 and the area of integration in (4) is restricted to the positive values
of both E1 and E2. The number of beads in most calculations was set to n = 5, additional
simulations have been made for n = 8. Calculations were carried out in a rectangle (mainly
in a square) with 0 < E1 < Emax1, 0 < E2 < Emax2. A grid of cells (boxes) labelled by (i, k),
1 � i � Nb1, 1 � k � Nb2, was introduced. We use natural oscillator units in which energy
is measured in h̄ω and distance in

√
h̄/(µω). In these units H1(q) = n

2

∑
1�t�n(rt − rt+1)

2

and H2(q) = 1
2n

∑
1�t�n r2

t .

Following the Wang–Landau algorithm [10, 11], we equate to zero all initial values of
entropy distribution, Sik , corresponding to (i, k) cells. Each MC step includes variation of
coordinates of a uniformly chosen arbitrary bead and an attempt to shift it to a new position. If
the trial energy pair, (E1, E2)tr, does not leave the energy rectangle, the transition is determined
according to the following probability rule: p(ik → i ′k′) = min(1, exp(Sik − Si′k′)). In all
other cases the trial configuration is rejected. Irrespective of acceptance of the trial state, a
constant, �s, is added to the current entropy value (i.e. either to the previous,Sik , or to the newly
accepted one, Si′k′ ). The number of visits counter (nv(i, k) or nv(i ′, k′) correspondingly) is
augmented by 1. For the initial value of �s we mainly used (in accordance with [10])
�s = �s0 = 1, but other initial values �s0 can be chosen as well. The length of a single
MC sweep, m, was taken equal to several million elementary steps so as to provide an average
number of visits throughout a sweep to each energy cell of about several hundred. The
second sweep of the same length (and all further sweeps) started with a modification of
�s: �s → a�s where a is a constant increment, 0 < a < 1. As a rule we used values
0.5 � a � 0.95. For a = 0.5 the sequence is �s = 1, 0.5, 0.25, etc as was the case in the
work [10]. Gradual decrease of �s provides finetuning values of Sik in each succeeding sweep
with increasing accuracy.
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Figure 1. (a) Entropy distribution in the (E1, E2) plane presented as a density map. Simulation
conditions: number of beads n = 5, Emax1 = Emax2 = 40, Nb1 = Nb2 = 200, number of
sweeps = 80, length of a sweep m = 8 × 106; (b) a part of (a) on an extended E2 scale.

In order to determine an optimal regime of simulations, we calculated the rates of visits to
separate (i, k) cells (by normalization values of nv(i, k)) and determined their relative mean
square deviation from the homogeneous (‘ideal’) distribution p0 = (Nb1Nb2)

−1. It appeared
that change of the relative deviation during a single run strongly depends on the value of the
increment a. For example, for a = 0.5 (value used in [10, 11]) the relative deviation falls
rather fast, from several tens of per cent to about ten per cent, during first few sweeps; then
this process stops and a stage of random fluctuations usually follows with relative deviations
within 10–20%. For values of a closer to unity, a similar process goes slower but the level of
stabilization is lower. For a = 0.8, this level was about 1–3%, for a = 0.95 it reached 0.3%.
The regime of convergence can also be considerably influenced by the length of a sweep m
and its increase from the current sweep to the next one. By observing and analysing such
simulation phenomena, it is possible to choose an optimal set of input parameters for obtaining
the highest possible accuracy.

3. Results and discussion

Our result for the distribution of entropy for n = 5 is presented in figure 1. As long as the zero
level of S is not important for obtaining averages, we subtract from the entropy distribution
values, Sik , the average increase per cell, m�s/(Nb1Nb2), after each sweep. Thus the entropy
is normalized so that its mean value over the square in the (E1, E2) plane, figure 1, is zero.
It is seen that, as a whole, entropy increases with the increase of both E1 and E2. At small
E1 and large E2, the isolines run almost parallel to the E2 axis while at small E2 the isolines
strongly bend to follow the direction of the E1 axis. We can consider the graph in figure 1 also
as that for the density of states, �(E1, E2); in this case the levels −16, . . . , 0, . . . , 8 should be
read as e−16, . . . , 1, . . . , e8.

Having obtained the entropy surface distribution, we can easily calculate canonical
surface distributions P(E1, E2; β) for any temperature. In figure 2 we present the function
ln P(E1, E2; β) = −E1/β −E2β + S(E1, E2) for five values of β, β = 1

8 , 1
2 , 1, 2, 8, covering

a wide range of temperatures. The method of presentation is the same as for the entropy in
figure 1. It is seen that for the highest temperature

(
β = 1

8

)
the maximum of the distribution

is stretched along the E2 axis in a very narrow stripe, isolines are practically parallel to the
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Figure 2. Canonical distributions in the (E1, E2) plane for five inverse temperatures β.
Presentation and simulation conditions are the same as in figure 1. Values of β : 1

8 , 1
2 , 1, 2, 8

for (a), (b), (c), (d) and (e) respectively.

E2 axis almost in the whole range of E2 and the slope of the distribution is very steep. These
features correspond to a high-temperature regime (at this temperature quantum and classical
results for energy differ only by 0.12%). For β = 1

2 , a strong shift of the distribution maximum
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Table 1. Calculated average potential energies, 〈Up〉calc, of a three-dimensional quantum harmonic
oscillator at different temperatures in comparison with the exact analytical results for the quantum
potential energy 〈Up〉exact and its n-bead approximation 〈Up〉exact

n for n = 5 and 8. Simulation
parameters for n = 5 are the same as in figures 1 and 2 while for n = 8, Emax1 = 70 and
Nb1 = 350.

β 1/8 1/4 1/2 1 2 4 8

〈Up〉calc
5 11.249 6.007 3.059 1.631 0.975 0.715 0.548

〈Up〉exact
5 12.0150 6.030 3.060 1.617 0.969 0.725 0.586

〈Up〉calc
8 11.307 6.025 3.062 1.618 0.972 0.741 0.608

〈Up〉exact
8 12.0156 6.030 3.0612 1.6207 0.9785 0.7559 0.6714

〈Up〉exact 12.0156 6.031 3.062 1.623 0.985 0.778 0.751

to the origin of the (E1, E2) plane is observed, the isolines are oblique to both axes and the
steepness of the slopes is less than before. For β = 1 the maximum shifts still further towards
the E1 axis and the isolines in most of the square follow at nearly equal angles to both axes.
For β = 2 and 8 we observe a further change of the picture with the maximum canonical
distribution being stretched along the E1 axis especially strongly for the lowest temperature.

The quantity which can be most easily obtained from our entropy distribution by numerical
integration and then compared with the exact data is the average potential energy 〈Up〉. For
the quantum oscillator 〈Up〉exact = d

4 coth
(

β

2

)
. The finite n-bead expression for 〈Up〉 can also

be evaluated analytically (see the appendix). For n = 5 this expression reads

〈Up〉exact
5 = d

β

4n2

5(16C4 − 12C2 + 1)

16C5 − 20C3 + 5C − 1
(7)

where

C = 1 +
1

2

(
β

n

)2

. (8)

The comparison with both sets of analytical data is given in table 1.
For inverse temperatures β = 1

4 , 1
2 , 1 and 2 we see that the error of numerical results

is within 1.0%. For these temperatures, the essential maximum of the canonical energy
distribution is well within the considered (E1, E2) area and all relevant configurations are
sampled properly. The statistical uncertainty due to finite length of the MC run is evaluated
as well within 0.1% for all temperatures; some systematic error may also come from the finite
grid on the (E1, E2) plane.

For the highest temperature, β = 1
8 , the error is about 6%, which is related to a very

narrow canonical distribution extended along the E2 axis and going beyond our cut-off value
of Emax2 = 40 (see figure 2(a)). As long as at β = 1

8 , the oscillator is practically classical,
we performed an entropy sampling Wang–Landau calculation of the classical density of
states, �(E), which in this case is a one-dimensional function. For a classical d-dimensional
oscillator there exists an analytical expression for �(E) (see e.g. [15]):

�d(E) = (2π)d/2 Ed/2−1

�(d/2)
(9)

which for d = 3 yields

�3(E) = 25/2πE1/2. (10)

In our entropic sampling calculations with Emax = 120 and Nb = 100, we reproduced
S3(E) = ln �3(E) with very high precision and obtained by means of an appropriate canonical
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integration the mean potential energy value 〈Ep〉
(
β = 1

8

) = 11.995 which, compared with
the exact classical value 3

2β
= 12, yields an error less than 0.05 %.

Greater deviations at low temperatures, β = 4 and 8, are of another nature (though the
finite cut-off at Emax1 = 40 also plays its role). The canonical distribution in this case is
also very narrow and now jammed against the E1 axis. The principal difference is that in
the narrow vicinity of the E1 axis, there exists a zone inaccessible to the system at finite
number of beads n. It is clear that it is impossible to create a path with (almost) zero potential
energy E2 and high bond energy E1. This inaccessible region is seen in the upper left part of
figure 1(b). It corresponds to the fact that finite-bead approximation of path integral becomes
more and more insufficient for obtaining correct results as the temperature decreases. It is
evident that, upon increasing the number of beads n, this inaccessible region becomes narrower
but does not disappear completely at any finite n. The important point for obtaining accurate
results is, however, whether the essential maximum of the canonical distribution overlaps the
inaccessible region.

For β = 4, 8, values of 〈Up〉exact
5 deviate considerably from those of 〈Up〉exact, especially

for β = 8, due to insufficiency of the n = 5 bead approximation of the path integral at low
temperatures. The deviation of numerical data from 〈Up〉exact

5 is 1.5% and 6% correspondingly.
An additional calculation has been performed for the number of beads n = 8. In this

simulation, the cut-off energy Emax1 was increased to 70 because the total energy of ‘springs’
scales approximately as n. Yet again, we reached a very good precision of 1% or less
in the range of ‘moderate’ temperatures β = 1/4 . . . 2. One can also see that increasing the
number of beads substantially improves results in the low-temperature region, the improvement
being of about the same size as one can expect from the analytical result for the finite-bead
approximation at n = 8.

4. Conclusion

In this communication we have extended the entropic sampling Monte Carlo method within
the Wang–Landau algorithm to the case of path integral representation of a quantum system.
We have shown that the method in a single simulation run provides reasonably accurate
estimation of the energy within a wide temperature range for a quantum particle in a harmonic
potential. The presented diagrams of entropy and canonical probability distribution can give a
clear indication of whether the simulation parameters (number of beads, cut-off energies, grid
resolution) are adequate for the considered problem and what should be done to improve the
accuracy. The method can be applied practically without changes for a general case of many
particles interacting by an arbitrary potential. All the variety of physical systems contains in
different forms of �(E1, E2). The account of exchange for identical particles yields another
field for applying such methods.
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Appendix. Finite n-bead expression for the partition function of a quantum oscillator

The n-bead approximation for the partition function (1) in the case of a one-dimensional
quantum oscillator can be presented as
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Zn(β) =
(

n

2πβ

)n/2 ∫
dx1 · · · dxn exp

[
−

(
n

β
+

β

2n

) ∑
i

(xi)
2 +

n

β

∑
i

xixi+1

]
(A.1)

with cyclic condition, xn+1 = x1. Introducing new variables yi =
√

n
2β

xi , we get

Zn(β) = 1

πn/2

∫
dy1 · · · dyn exp

[
−

(
2C

∑
i

(yi)
2 − 2

∑
i

yiyi+1

)]
(A.2)

where

C = 1 +
1

2

(
β

n

)2

.

For the canonical average potential energy it straightforwardly follows

〈Up〉n = − β

2n2

dZn

dC

1

Zn

. (A.3)

Following the appendix in [14] we can present a bilinear form over yi in the exponent of
(A.2) as a scalar product (Any · y) where y = (y1 · · · yn) is an n-dimensional vector and An is
the following matrix:

An =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2C −1 0 . . . 0 −1
−1 2C −1 0 . . . 0
0 −1 2C −1 . . . 0
... . . . . . .

...

0 . . . 0 −1 2C −1
−1 0 . . . 0 −1 2C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Reducing the bilinear form to a quadratic form, we express Zn as

Zn = 1

πn/2

∫
dt1 · · · dtn exp

(
−

∑
i

λi t
2
i

)
= (λ1 · · · λn)

−1/2 = (det An)
−1/2 (A.4)

where λi are eigenvalues of matrix An. For the determinant of the matrix An, we have

det An = 2(C�n−1 − �n−2 − 1) (A.5)

where �n is the determinant of the matrix

�n = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2C −1 0 . . . 0 0
−1 2C −1 0 . . . 0
0 −1 2C −1 . . . 0
... . . . . . .

...

0 . . . 0 −1 2C −1
0 0 . . . 0 −1 2C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For �n the following relation is valid:

�n = 2C�n−1 − �n−2 (A.6)

Now following (A.3) we obtain for 〈Up〉n:

〈Up〉n = β

4n2

d det An

dC

1

det An

. (A.7)

Using (A.5) and (A.6) we can obtain det An recursively for any finite value of n.
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For n = 5 we get

det A5 = 32C5 − 40C3 + 10C − 2.

For 〈Up〉5 it now yields

〈Up〉5 = β

4n2

5(16C4 − 12C2 + 1)

16C5 − 20C3 + 5C − 1
. (A.8)

At high temperatures this expression gives the classical limit

〈Up〉5 = 1

2β
.

At low temperatures it goes to zero due to the finite value of n.
The mean potential energy for n = 8 is

〈Up〉8 = β

4n2

32C7 − 48C5 + 20C3 − 2C

4C8 − 8C6 + 5C4 − C2
. (A.9)

The generalization to the d-dimensional case is straightforward.
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